第337章美国行

    第337章美国行 (第2/3页)

料种类多、可制造零件尺寸大、表面质量好、精度高等优点,但也存在着可直接加工制造的形状结构有限、需要辅助的工装夹具等问题。

    从20世纪60年代初,美国研制成功两种工业机器人,并在工业生产中得到应用。自20世纪70年代开始在汽车工业中应用以来,在其他制造行业的应用也越来越多旧o。但是大都用于简单重复繁重的工作,如上、下料,搬运等,以及工作环境恶劣的场所,如喷漆、焊接、清砂和清理核废料等。20世纪90年代后,由于工业机器人的开式链结构使其能实现柔性制造,能适应多品种小批量的生产,而多品种、小批量的生产正是快速原型技术的特点和应用范围,促进了工业机器人在快速原型技术中的应用。

    快速制造原型技术是借助计算机辅助设计,或者用实体反求工程得到有关原型和零件的几何形状、结构和材料的组合信息,从而获得目标原型的概念并以此建立数学化描述原型,之后将这些信息输入到计算机控制的机电集成制造系统,通过逐点、逐面进行材料的成型,再经过必要的后期处理,使其在外观、强度和性能等方面达到设计要求。这样就可达到快速、准确地制造原型或实际零件的目的。在过去的十几年,考虑缩短产品的开发时间、提高设备的功能性以及环境和谐性和产品质量,研究人员已经构筑了多种机器人快速原型系统。1996年Vergeest等人提出了一个雕刻机器人系统。该系统包含一个工业机器人和一个工作台,它是基于铣削泡末材料的快速原型系统,主要是为设计者提供进一步设计的参考,原型的尺寸大约80cm,精度一般在0.5~2mm,用时大约几个小时。

    基于工业机器人的快速原型制造系统一般由计算机、机器人、控制柜、工作台以及加工工具几部分组成,如图3所示。而前面提到的研究成果,不管是材料堆积成形还是材料去除成形的原型系统,都是根据零件的CAD模型,生成符合机器人轨迹特点的CAM多轴加工轨迹,以及通过自行开发的软件进行数据转化,把CAM加工路径转化为机器人加工路径。工

    (本章未完,请点击下一页继续阅读)