第191章 数学奇迹

    第191章 数学奇迹 (第1/3页)

    “根据刚才所讲的筛法公式,由(28式)、引理8和引理9得到定理1。”

    “由此可得。”

    “(1,1)及Px(1,1)≥……(logx)2”

    “证毕。”

    数学交流大会主会场,面积最大的报告厅中,徐源的报告终于来到尾声。

    最后讲述的同时,拿起写字笔在旁边写字板上快速板书数学公式。

    当得出最终的结论时,整个报告厅内的数学家顿时自发站起身,用最热烈的掌声向徐源致以敬意。

    尽管在场所有人的年龄都比徐源大很多,但此刻却是心服口服。

    甚至依旧沉浸在刚才的报告内容中。

    久久回味。

    同一时间在其他报告厅中,虽然他们看到的只有实时转播画面,这时也同样主动站起身热烈鼓掌,脸上表情肉眼可见的激动兴奋。

    掌声在雷动了足足几分钟后,这才逐渐平息下来。

    但很多人依旧洋溢着欣喜笑容。

    威尔斯教授菲尔兹奖得主陶哲轩,以及国际数学联盟代表等学界知名学者,也都走过来和徐源交谈。

    遗憾的是德利涅只能通过卫星会议交谈,没法来到现场见证这场报告会。

    “实在是太精彩了。”

    “无论是筛法的改进结合,还是巧妙的借助了群论数学分支方法,能将其完美融合简直就是数学奇迹。”

    威尔斯擅长的领域并不是数论,可在听完徐源的报告后也能感受到其中的精妙。

    来不及思考称赞的语言,下意识脱口快速讲了这么两句话。

    原本他也是考虑到自己擅长的并非数论,这才组织了研究所的数论小组验证,以至于论文的具体内容并没有看过多少。

    今天听了徐源的现场报告,他才明白这篇论文的精彩程度。

    不同的筛法和数学分支,想结合在一起,并完成某项问题的证明。

    任何一处不合理存在漏洞,都无法解决哥德巴赫猜想问题。

    并且还会被其他人抓住错误的地方,对整篇论文的证明过程进行证伪。

    偏偏徐源完美解决了这项难题。

    从论文在数学学报上发表,到今天举办数学交流大会已经快过去一个月,数学界却没有任何一个人能证明徐源的论文存在错误。

    这足以说明问题。

    旁边陶哲轩待威尔斯的话说完,自己也是颇感慨。

    抬起视线看向徐源郑重说:“在数论领域我的数学思维和水平都不如你。”

    “我研究哥德巴赫猜想的时候,还在使用比较传统的证明思路方法,以至于很长时间没有任何头绪。”

    “甚至连确定大致方向都做不到,白白浪费了很多的时间。”

    “看到你的论文,尤其听完今天的详细报告,我才明白自己错的有多么离谱。”

    他此刻对自己与徐源的差距,有着很清晰的认知。

    并非单单是知识水平。

    更多是属于数学思维上的差距。

    就比如徐源哪怕首次研究哥德巴赫猜想,都敢采用大胆且无法预测结果的证明方法,丝毫不害怕最后证明失败

    (本章未完,请点击下一页继续阅读)