第225章 情绪模型

    第225章 情绪模型 (第2/3页)

矿”。第223章的“语音转文字+语调分析”技术在此深度应用:

    • 关键词情绪标注:提取“谨慎”“乐观”“遗憾”等情绪词,统计频率(如CEO连续3次用“谨慎”描述未来,标记为“信心不足”);

    • 语调频率分析:用Librosa库计算关键句(如“净利润增长”)的声调上扬幅度(上扬>20%为“强自信”,平调为“敷衍”);

    • 非语言信号捕捉:通过停顿时长(>3秒视为“回避”)、重复语句(如“这个我们以后再说”出现5次以上)标记“诚信风险”。

    经典案例:第223章某医药公司CEO在“毛利率下滑”提问时,语调颤抖+答非所问(重复“行业共性”3次),系统通过“管理层情绪模型”给出“诚信评分-20分”,3个月后该公司公告终止试验,股价暴跌。

    (三)特殊场景情绪:在“极端时刻”捕捉“人性极值”

    市场总有“黑天鹅”与“政策突袭”的特殊场景,情绪模型需在这些时刻“超常发挥”。

    1. 危机事件情绪:恐慌的“多米诺骨牌”

    • 事件分级响应:将危机分为“行业级”(如教育“双减”)、“公司级”(如财务造假)、“产品级”(如塑化剂),匹配不同情绪模型;

    • 情绪传染阻断点:识别“情绪稳定器”(如行业龙头股的抗跌表态),预测恐慌情绪何时见顶(如某白酒龙头发公告澄清“塑化剂”后,板块情绪指数3日内回升20点)。

    2. 政策发布情绪:“预期差”的狂欢与踩踏

    • 政策文本情绪分析:用NLP识别政策文件中的“支持”“限制”“中性”词汇(如“双碳”政策中“大力发展”标为“强支持”);

    • 预期差计算:对比“政策实际力度”与“市场前期预期”(如某新能源补贴政策低于预期,情绪指数从+50骤降至-30)。

    三、情绪模型的构建:从“数据输入”到“情绪输出”的技术链条

    情绪模型的构建是“数据-算法-场景”的三重融合,核心流程可分为“四步锻造法”。

    (一)第一步:数据预处理——给情绪“定标准”

    基于第223章清洗整理后的非结构化数据,进行“情绪标准化”:

    • 文本数据:统一“积极/消极”词典(如“增长”=+1,“下滑”=-1),过滤水军话术(如“目标价999”固定句式);

    • 音频数据:将录音切割为“问答片段”,标注“问题类型”(如“业绩”“战略”“风险”),避免断章取义;

    • 图像数据:用OCR识别图片中的“情绪符号”(如业绩会PPT上的“预警三角”图标),转化为情绪标签。

    (二)第二步:算法分层——让情绪“可计算”

    情绪模型采用“三层算法架构”:

    • 底层(特征提取):用BERT做文本向量化、Librosa做语音特征提取、OpenCV做图像特征提取,将非结构化数据转化为数值向量;

    • 中层(情绪识别):用SVM支持向量机做基础情绪分类(喜/怒/哀/惧),用LSTM长短期记忆网络做复合情绪预测(如“恐慌性抛售”);

    • 顶层(场景适配):根据不同场景(市场/个体/危机)调用不同算法组合(如危机场景叠加“情绪扩散模型”)。

    (三)第三步:动态校准——让情绪“随市而变”

    情绪模型需避免“刻舟求剑”,通过“动态校准机制”适应环境:

    • 时间校准:牛市中“乐观情绪”阈值上调10%(避免过度预警),熊市中“恐慌情绪”阈值下调10%(提高敏感度);

    • 行业校准:科技股“乐观情绪”容忍度更高(允许短期亏损),消费股“恐慌情绪”触发更快(重视品牌声誉);

    • 用户反馈校准:分析师可标记“情绪误判”案例(如“误将谨慎视为悲观”),系统通过强化学习优化模型。

    (四)第四步:可视化输出——让情绪“一目了然”

    情绪模型的结果通过“三维仪表盘”呈现:

    • 市场情绪地图:用颜色标注32个行业的情绪指数(红=恐慌,绿=贪婪);

    • 个体情绪档案:展示个股的“舆情情绪曲线”“管理层语调评分”“情绪拐点预警”;

    • 场景情绪报告:危机事件后自动生成“情绪传染路径图”“稳定器效果评估”。

    四、实战检验:情绪模型如何“预见

    (本章未完,请点击下一页继续阅读)